1	$\pi \times 12^2 \times \frac{AOC}{360} (=100)$		4	M1	oe for setting up a correct expression for the area of the sector (or equation)
	$(AOC =) \frac{100 \times 360}{\pi \times 12^2} \left(= \frac{250}{\pi} \right)$			M1	for correctly rearranging for AOC
	(Angle <i>ABC</i> =) "79.57747" ÷ 2 (= 39.7887 or $\frac{125}{\pi}$)			M1	ft dep 1 st M1 and 'x' less than 360 for dividing their 'AOC' by 2
		39.8		A1	for awrt 39.8 accept $\frac{125}{\pi}$
					Total 4 marks

2	$ (2+\sqrt{5}) \times AC = (2\sqrt{5}) \times (2\sqrt{5}+4+\sqrt{5}) \text{ or} $ $ (2+\sqrt{5}) \times AC = (2\sqrt{5}) \times (3\sqrt{5}+4) \text{ or} $ $ (2+\sqrt{5}) \times (AB+2+\sqrt{5}) = (2\sqrt{5}) \times (2\sqrt{5}+4+\sqrt{5}) $		5	M1	for using the intersecting chord theorem correctly eg may label $AB = x$ or $AC = x$ oe
	$(AC =) \frac{\left(2\sqrt{5}\right) \times \left(2\sqrt{5} + 4 + \sqrt{5}\right)}{\left(2 + \sqrt{5}\right)} \text{ or } (AC =) \frac{\left(30 + 8\sqrt{5}\right)}{\left(2 + \sqrt{5}\right)}$			M1	dep 1st M1 for rearranging for AC may use $AB+2+\sqrt{5}$ on LHS
	$(AC =) \frac{\left(30 + 8\sqrt{5}\right)}{\left(2 + \sqrt{5}\right)} \times \frac{\left(2 - \sqrt{5}\right)}{\left(2 - \sqrt{5}\right)} \text{ or}$ $(AB =) \frac{\left(21 + 4\sqrt{5}\right)}{\left(2 + \sqrt{5}\right)} \times \frac{\left(2 - \sqrt{5}\right)}{\left(2 - \sqrt{5}\right)}$			M1	indep for multiplying by the conjugate of the denominator of <i>their</i> fraction, so long as fraction in the form $\frac{a+b\sqrt{5}}{c+d\sqrt{5}}$
	$(AC =) \frac{60 - 30\sqrt{5} + 16\sqrt{5} - 40}{4 - 5} (= 14\sqrt{5} - 20) or $ $(AB =) \frac{42 - 21\sqrt{5} + 8\sqrt{5} - 20}{4 - 5} (AB =) \frac{20 - 14\sqrt{5}}{-1} - (2 + \sqrt{5}) $			M1	dep 3rd M1 for multiplying out the numerator
	$(AB =) \frac{20 - 14\sqrt{5}}{-1} - (2 + \sqrt{5})$	$13\sqrt{5} - 22$		A1	allow $p = 13$ and $q = -22$
					Total 5 marks

3	(a)(i)		122	1	B1	
	(a)(ii)		reason	1	B1	(dep on a correct answer or a correct method seen for (i)) Opposite angles in a cyclic quadrilateral sum to 180°
	(b)	$360 - 2 \times 58 \text{ or } 2 \times \text{`122'}$		2	M1	ft from (a)
			244		A1	
						Total 4 marks

4	$(AOC =) 38 \times 2 (= 76)$		4	M1	
		52		A1	
					(dep on M1) for all reasons relevant to their method – underlined words must be seen.
					angle at the <u>centre</u> is $\underline{2} \times (\text{double})$ angle at <u>circumference</u> / <u>angle</u> at <u>circumference</u> is $\frac{1}{2}$ angle at <u>centre</u> angles in a <u>triangle</u> add to 180° or angles in a <u>triangle</u> add to 180° base angles in an <u>isosceles</u> triangle (are equal)
					If not B2 then award B1 (dep on M1) for a correct circle theorem
					Total 4 marks

5	$eg 9 \times 6 = 8 \times PD oe$		2	M1	A correct equation involving PD
		6.75		A1	oe
					Total 2 marks

6	Angle $CAD = 28^{\circ}$ or angle $ACB = 32^{\circ}$ or angle $ACD = 90^{\circ}$ or angle $ABD = 90^{\circ}$		4	M1	
	migration of migration of	30°		A1	For a correct answer of 30
	Angles in the same segment are equal, angle in a semicircle is 90° (or angle at centre is double angle at circumference oe) angles in a triangle add up to 180°/angles in a triangle isosceles triangle alternate angles vertically opposite angles (or vertically opposite) angles at a point opposite angles in a cyclic quadrilateral angle between tangent and radius (diameter) alternate segment theorem angles subtended by the same arc(or chord) at the circumference (or on the circle)			B2	Dep on M1 for all correct reasons for their method used (if not B2 then award B1(dep on M1) for a correct circle theorem reason)
					Total 4 marks

7	$ORQ = 90 - 60 \ (=30) \text{ or } OQR = 30$ or $PQR = 0.5 \times (360 - 238) \ (=61)$ or $QPR = 60$ or $OPR = \frac{180 - (360 - 238)}{2} \ (=29)$		4	M1	The correct working or the correct angle for <i>ORQ</i> or <i>OQR</i> or <i>OQR</i> or <i>OPR</i> or <i>OPR</i> or <i>OPR</i> . Must be clearly stated as the correct angle or shown on the diagram in correct position. (eg just seeing 30 in working without a label is not sufficient for the award of this mark)
	Working not required, so correct answer scores M1A1 (unless from obvious incorrect working)	31		A1	if not on answer line, may be seen on diagram or clearly labelled
	NB: degrees symbol not essential for reasons We will allow the symbol Δ for 'triangle' ∠ for angle Σ for sum	full reasons for method used		B2	(dep on a fully correct method that should lead to the answer) for fully correct reasons for method used (underlined words must be seen) eg Angle between tangent and radius is 90° Angles around a point total 360° Angle at centre is twice angle at circumference/edge Total of angles in triangle is 180° / triangle 180° Base angles in an isosceles triangle (or 2 sides equal, so 2 angles equal) Angles in a quadrilateral total 360° or quadrilateral 360° / Accept "4-sided shape" or "quad" Alternate segment theorem (B1 dep on M1 for at least one reason for method used)
					Total 4 marks

8	[ADC =] 180 – 98 (= 82)		6	M1	may be seen on diagram
	$[AC^2 =]8^2 + 7.5^2 - 2 \times 8 \times 7.5 \times \cos(98) (= 136.95)$			M1	correct equation for AC or AC^2
	$[AC =] \sqrt{"136.95"}$ or $\sqrt{64 + 56.25 + 16.7} (= 11.7)$ oe			M1	complete method to find AC showing correct order of operations
	eg $[AD = \frac{"11.7" \sin 35}{\sin"82"} (= 6.77)$ or $[DC = \frac{"11.7" \times \sin"63"}{\sin"82"} (= 10.5)$ oe (where "82" = 180 - 98, "63" = 180 - "82" - 35)			M1	correct calculation for <i>AD</i> or <i>DC</i> dep on 1 st M1 and 2 nd M1
	eg $[AD =] \frac{"11.7" \sin 35}{\sin "82"}$ and $[DC =] \frac{"11.7" \sin "63"}{\sin "82"}$ oe or $[AD =] \frac{"11.7" \sin 35}{\sin "82"}$ and $[DC =] \sqrt{"11.7"^2 + "6.77"^2 - 2 \times "11.7" \times "6.77" \times \cos"63"}$ $[DC =] \frac{"11.7" \sin "63"}{\sin "82"}$ and $[AD =] \sqrt{"11.7"^2 + "10.5"^2 - 2 \times "11.7" \times "10.5" \times \cos 35}$ Where "63" = 180 - "82" - 35			M1	correct calculations for AD and DC (AD = 6.77 DC = 10.5) dep on 1 st M1 and 2 nd M1
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	32.8		A1	accept 32.7 – 32.9
					Total 6 marks

			1								
9		BFD = 39°	<i>BED</i> = 39°				4	B1			
		BDE = 180 - (18 + 39)	$EBD = 18^{\circ} \text{ and}$	0)				M			
<u> </u>			BDE = 180 - (18 + 3)	9)	12	3		Al	-		
<u> </u>					12)		B1		on M1	
								DI	for a	all correct circle theorems relevant their method e.g.	
										mate segment theorem and opposite les in a cyclic quadrilateral sum to	
									or		
										mate segment theorem and angles in e segment are equal	
									Sum	Total 4 marks	
10	(a) (i)				62			3	B1		
	(a) (ii)				118				B1ft	180 – their (a)(i)	
	(b)				62				B1		
										Total 3 marks	
11		PRS = 90 or $PQS = 90$ or	· PSR = 180 -136 (=			3	M		nay be s	seen on diagram. Must be labelled on	
		44)					3.6		liagram	or identified using 3 letter notation.	
		<i>RPS</i> = 180 – 90 – "44" oe 46)	or RQS = 136 - 90 (=				M		or a con	nplete method	
				46	5		Al			Total 3 marks	
12		$ABC = 90^{\circ}$ and $ACB (= ADB = 35)$ or $ABO = 55^{\circ}$ and $AOB = 180^{\circ}$						4	M1		
		or $BDC = 55^{\circ}$, $ADC = 90^{\circ}$ and	, ,								
		BDC = 33, ADC = 90 and	ADB - 90 - 33 (- 33)		35				Al for	r ADB = 35	
		Angles in a semicircle are 90 Angles in a triangle add to 13 triangle add to 180°) Angles in the same segment at the circumference subtend arc/chord of the circle (are ec	(are equal) OR angles (ed) from the same	30					B2 (dep on M1) for all 3 reasons appropriate to their method B1 (dep on M1) for one correct circle theoren appropriate to their method)		
		or Angles in an <u>isosceles</u> triang Angles in a <u>triangle</u> sum to 1 triangle add to 180°) Angle at the <u>centre</u> is 2 × (de circumference / angle at <u>circumference</u> or	80° (Angles in a puble) angle at						NB For the third method only 2 reasons are required		
		Angles in the same segment at the circumference subtendarc/chord of the circle Angles in a semicircle are 90	(ed) from the same								
										Total 4 marks	
13		$DFE = 42^{\circ} \text{ or } DOG = 180^{\circ}$ or $EFG = 90^{\circ} \text{ or } EDG = 9^{\circ}$ or $DEG = 90 - 42 (= 48)^{\circ}$						4	M1	used or seen in diagram (must be clearly labelled if not in diagram)	
		0.000 70 42 (40)				48°			A1	award 2 marks for 48 unless from an incorrect method	
		angles in same segment of angles from same chord of angles at the circumference arc of the circle angles in a semicircle are angles in a semicircle are angle subtended by diamed angles at centre twice angle angles in a triangle add to angles and the circumference are angles and the	r be subtended from the second	same					B2	Dep on a fully correct method to find angle <i>DFG</i> for a full set of reasons relevant to their method. B1 dep on M1 for at least one relevant circle theorem.	
										Total 4 marks	

14	(a)(i)		140	1	B1	
	(a)(ii)		opposite angles of	1	B1	dep on B1 in (a)(i) or seeing 180 – 40 with no
			a cyclic			contradiction
			<u>quad</u> rilateral (add			oe eg <u>angle</u> at <u>centre</u> is <u>double $(2 \times)$</u> angle at
			to 180°) oe			<u>circumference</u> oe AND
						angles around a point (or point 360)
	(b)	ADB = 66 or		3	M1	Clearly labelled in working or shown on
		ABO = 90 - 66 (=24) or				diagram
		BAO = 90 - 66 (=24) or				
		$ODB = \frac{180 - 80}{2} (= 50)$ or				
		2				
		DOB reflex = 280				
		For 2 of:			M1	(award M2 for $360 - (280 + 40 + 24)$ oe
		ADB = 66 or				
		ABO = 90 - 66 (=24) or				
		BAO = 90 - 66 (=24) or				
		$ODB = \frac{180 - 80}{2} (= 50)$				
		<u> </u>				
		DOB reflex = 280				
		Correct answer scores full marks (unless	16		A1	
		from obvious incorrect working)				
						Total 5 marks

15	180 – 78 – 78 oe or (90 – 78) × 2 oe		2	M1 for a complete correct method to find angle <i>ABC</i> . This is not awarded if the angles are incorrectly labelled unless they have clearly started again (Ignore incorrect angles on the diagram if a student shows a correct method leading to the required answer)
	Correct answer scores full marks (unless from obvious incorrect working)	24		A1 award full marks if 24 is seen in the correct place on the diagram unless contradicted on the answer line Total 2 marks

16	DCO = 90 (or right (angle)) or $DAO = 90$ (or right (angle)) Could also be awarded for $CAO + CAD = 90$ or $DAC + CAO = 90$		3	M1	may be marked on diagram – also allow right angle 'square' symbol on diagram	M2 implied by 360 – 90 – 90 – 48 or 360 – 228
	Obtuse $AOC = 360 - 90 - 90 - 48$ (= 132)0e or Obtuse $AOC = 2(180 - (0.5 \times 48) - 90)$ (= 132) or Obtuse $AOC = 180 - "24" - "24"$ or $180 - 48$ (if working with $\triangle DAC$ and $\triangle OAC$) or Reflex $AOC = 90 + 90 + 48$			M1	dep on M1 being awarded may be marked on diagram	
	Correct answer scores full marks (unless from obvious incorrect working)	228		A1	SC if no other marks awarde 132 gains B1	ed
	the street was the st				102 80000 21	Total 3 marks

17 (a) (i)	90	2	B1	
(a) (ii)	Angle in a semicircle is 90° oe Angle in a semicircle is 90° oe Triangle in semicircle is 90° oe Angle at centre is double (oe eg ×2) angle at circumference oe Angle at circumference is half (oe) angle at centre. oe		B1	dep on B1 in (a)(i) Valid reason given, underlined words give minimally acceptable answer.
(b) (i)	22	2	B1	
(b) (ii)	Angles in the same segment (are equal) or angles at the circumference subtended from the same arc of the circle or angles on the same chord		B1	dep on B1 in (b)(i) Valid reason given, underlined words give minimally acceptable answer.
,				Total 4 marks